\(\int \frac {a^2-b^2 \sec ^2(c+d x)}{(a+b \sec (c+d x))^2} \, dx\) [706]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 30, antiderivative size = 52 \[ \int \frac {a^2-b^2 \sec ^2(c+d x)}{(a+b \sec (c+d x))^2} \, dx=x-\frac {4 b \text {arctanh}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{\sqrt {a-b} \sqrt {a+b} d} \]

[Out]

x-4*b*arctanh((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/2))/d/(a-b)^(1/2)/(a+b)^(1/2)

Rubi [A] (verified)

Time = 0.15 (sec) , antiderivative size = 52, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {4127, 4004, 3916, 2738, 214} \[ \int \frac {a^2-b^2 \sec ^2(c+d x)}{(a+b \sec (c+d x))^2} \, dx=x-\frac {4 b \text {arctanh}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{d \sqrt {a-b} \sqrt {a+b}} \]

[In]

Int[(a^2 - b^2*Sec[c + d*x]^2)/(a + b*Sec[c + d*x])^2,x]

[Out]

x - (4*b*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(Sqrt[a - b]*Sqrt[a + b]*d)

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 2738

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[2*(e/d), Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 3916

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[1/b, Int[1/(1 + (a/b)*Si
n[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[c*(x/a),
x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[
b*c - a*d, 0]

Rule 4127

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Dist[
C/b^2, Int[(a + b*Csc[e + f*x])^(m + 1)*Simp[-a + b*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C, m}, x
] && EqQ[A*b^2 + a^2*C, 0]

Rubi steps \begin{align*} \text {integral}& = -\int \frac {-a+b \sec (c+d x)}{a+b \sec (c+d x)} \, dx \\ & = x-(2 b) \int \frac {\sec (c+d x)}{a+b \sec (c+d x)} \, dx \\ & = x-2 \int \frac {1}{1+\frac {a \cos (c+d x)}{b}} \, dx \\ & = x-\frac {4 \text {Subst}\left (\int \frac {1}{1+\frac {a}{b}+\left (1-\frac {a}{b}\right ) x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{d} \\ & = x-\frac {4 b \text {arctanh}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{\sqrt {a-b} \sqrt {a+b} d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.25 (sec) , antiderivative size = 56, normalized size of antiderivative = 1.08 \[ \int \frac {a^2-b^2 \sec ^2(c+d x)}{(a+b \sec (c+d x))^2} \, dx=\frac {c}{d}+x+\frac {4 b \text {arctanh}\left (\frac {(-a+b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{\sqrt {a^2-b^2} d} \]

[In]

Integrate[(a^2 - b^2*Sec[c + d*x]^2)/(a + b*Sec[c + d*x])^2,x]

[Out]

c/d + x + (4*b*ArcTanh[((-a + b)*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(Sqrt[a^2 - b^2]*d)

Maple [A] (verified)

Time = 0.19 (sec) , antiderivative size = 59, normalized size of antiderivative = 1.13

method result size
derivativedivides \(\frac {2 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\frac {4 b \,\operatorname {arctanh}\left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a +b \right ) \left (a -b \right )}}\right )}{\sqrt {\left (a +b \right ) \left (a -b \right )}}}{d}\) \(59\)
default \(\frac {2 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\frac {4 b \,\operatorname {arctanh}\left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a +b \right ) \left (a -b \right )}}\right )}{\sqrt {\left (a +b \right ) \left (a -b \right )}}}{d}\) \(59\)
risch \(x +\frac {2 b \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {-i a^{2}+i b^{2}+\sqrt {a^{2}-b^{2}}\, b}{a \sqrt {a^{2}-b^{2}}}\right )}{\sqrt {a^{2}-b^{2}}\, d}-\frac {2 b \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+\sqrt {a^{2}-b^{2}}\, b}{a \sqrt {a^{2}-b^{2}}}\right )}{\sqrt {a^{2}-b^{2}}\, d}\) \(141\)

[In]

int((a^2-b^2*sec(d*x+c)^2)/(a+b*sec(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

1/d*(2*arctan(tan(1/2*d*x+1/2*c))-4*b/((a+b)*(a-b))^(1/2)*arctanh((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2)
))

Fricas [A] (verification not implemented)

none

Time = 0.35 (sec) , antiderivative size = 226, normalized size of antiderivative = 4.35 \[ \int \frac {a^2-b^2 \sec ^2(c+d x)}{(a+b \sec (c+d x))^2} \, dx=\left [\frac {{\left (a^{2} - b^{2}\right )} d x + \sqrt {a^{2} - b^{2}} b \log \left (\frac {2 \, a b \cos \left (d x + c\right ) - {\left (a^{2} - 2 \, b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {a^{2} - b^{2}} {\left (b \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right ) + 2 \, a^{2} - b^{2}}{a^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + b^{2}}\right )}{{\left (a^{2} - b^{2}\right )} d}, \frac {{\left (a^{2} - b^{2}\right )} d x - 2 \, \sqrt {-a^{2} + b^{2}} b \arctan \left (-\frac {\sqrt {-a^{2} + b^{2}} {\left (b \cos \left (d x + c\right ) + a\right )}}{{\left (a^{2} - b^{2}\right )} \sin \left (d x + c\right )}\right )}{{\left (a^{2} - b^{2}\right )} d}\right ] \]

[In]

integrate((a^2-b^2*sec(d*x+c)^2)/(a+b*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

[((a^2 - b^2)*d*x + sqrt(a^2 - b^2)*b*log((2*a*b*cos(d*x + c) - (a^2 - 2*b^2)*cos(d*x + c)^2 - 2*sqrt(a^2 - b^
2)*(b*cos(d*x + c) + a)*sin(d*x + c) + 2*a^2 - b^2)/(a^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + b^2)))/((a^2 -
b^2)*d), ((a^2 - b^2)*d*x - 2*sqrt(-a^2 + b^2)*b*arctan(-sqrt(-a^2 + b^2)*(b*cos(d*x + c) + a)/((a^2 - b^2)*si
n(d*x + c))))/((a^2 - b^2)*d)]

Sympy [F]

\[ \int \frac {a^2-b^2 \sec ^2(c+d x)}{(a+b \sec (c+d x))^2} \, dx=\int \frac {a - b \sec {\left (c + d x \right )}}{a + b \sec {\left (c + d x \right )}}\, dx \]

[In]

integrate((a**2-b**2*sec(d*x+c)**2)/(a+b*sec(d*x+c))**2,x)

[Out]

Integral((a - b*sec(c + d*x))/(a + b*sec(c + d*x)), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {a^2-b^2 \sec ^2(c+d x)}{(a+b \sec (c+d x))^2} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((a^2-b^2*sec(d*x+c)^2)/(a+b*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a^2-4*b^2>0)', see `assume?`
 for more de

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 235 vs. \(2 (43) = 86\).

Time = 0.30 (sec) , antiderivative size = 235, normalized size of antiderivative = 4.52 \[ \int \frac {a^2-b^2 \sec ^2(c+d x)}{(a+b \sec (c+d x))^2} \, dx=-\frac {\frac {{\left (\sqrt {-a^{2} + b^{2}} {\left (a + b\right )} {\left | a \right |} {\left | -a + b \right |} - {\left (a^{2} - 3 \, a b\right )} \sqrt {-a^{2} + b^{2}} {\left | -a + b \right |}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor + \arctan \left (\frac {\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {-\frac {b + \sqrt {{\left (a + b\right )} {\left (a - b\right )} + b^{2}}}{a - b}}}\right )\right )}}{{\left (a^{2} - 2 \, a b + b^{2}\right )} a^{2} + {\left (a^{2} b - 2 \, a b^{2} + b^{3}\right )} {\left | a \right |}} - \frac {{\left (a^{2} - 3 \, a b + a {\left | a \right |} + b {\left | a \right |}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor + \arctan \left (\frac {\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {-\frac {b - \sqrt {{\left (a + b\right )} {\left (a - b\right )} + b^{2}}}{a - b}}}\right )\right )}}{a^{2} - b {\left | a \right |}}}{d} \]

[In]

integrate((a^2-b^2*sec(d*x+c)^2)/(a+b*sec(d*x+c))^2,x, algorithm="giac")

[Out]

-((sqrt(-a^2 + b^2)*(a + b)*abs(a)*abs(-a + b) - (a^2 - 3*a*b)*sqrt(-a^2 + b^2)*abs(-a + b))*(pi*floor(1/2*(d*
x + c)/pi + 1/2) + arctan(tan(1/2*d*x + 1/2*c)/sqrt(-(b + sqrt((a + b)*(a - b) + b^2))/(a - b))))/((a^2 - 2*a*
b + b^2)*a^2 + (a^2*b - 2*a*b^2 + b^3)*abs(a)) - (a^2 - 3*a*b + a*abs(a) + b*abs(a))*(pi*floor(1/2*(d*x + c)/p
i + 1/2) + arctan(tan(1/2*d*x + 1/2*c)/sqrt(-(b - sqrt((a + b)*(a - b) + b^2))/(a - b))))/(a^2 - b*abs(a)))/d

Mupad [B] (verification not implemented)

Time = 16.72 (sec) , antiderivative size = 182, normalized size of antiderivative = 3.50 \[ \int \frac {a^2-b^2 \sec ^2(c+d x)}{(a+b \sec (c+d x))^2} \, dx=x-\frac {4\,b\,\mathrm {atanh}\left (\frac {8\,b^4\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+a^2\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (a^2-b^2\right )+5\,b^2\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (a^2-b^2\right )-8\,a\,b^3\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-2\,a\,b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (a^2-b^2\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {a^2-b^2}\,\left (a\,\left (a^2-b^2\right )+b\,\left (a^2-b^2\right )+4\,a\,b^2-2\,a^2\,b-2\,b^3\right )}\right )}{d\,\sqrt {a^2-b^2}} \]

[In]

int((a^2 - b^2/cos(c + d*x)^2)/(a + b/cos(c + d*x))^2,x)

[Out]

x - (4*b*atanh((8*b^4*sin(c/2 + (d*x)/2) + a^2*sin(c/2 + (d*x)/2)*(a^2 - b^2) + 5*b^2*sin(c/2 + (d*x)/2)*(a^2
- b^2) - 8*a*b^3*sin(c/2 + (d*x)/2) - 2*a*b*sin(c/2 + (d*x)/2)*(a^2 - b^2))/(cos(c/2 + (d*x)/2)*(a^2 - b^2)^(1
/2)*(a*(a^2 - b^2) + b*(a^2 - b^2) + 4*a*b^2 - 2*a^2*b - 2*b^3))))/(d*(a^2 - b^2)^(1/2))